

2TPM1

Измеритель-регулятор микропроцессорный двухканальный

Руководство по эксплуатации

КУВФ.421210.002 РЭ

11.2022 версия 3.16

Содержание

Предупреждающие сообщения	4
Введение	5
Используемые аббревиатуры	6
1 Назначение и функции прибора	
2 Технические характеристики и условия эксплуатации	
2.1 Технические характеристики и условия эксплуатации	
2.2 Условия эксплуатации	
3 Меры безопасности	
•	
4 Монтаж	
4.1 Установка прибора настенного крепления Н	
4.2 Установка прибора щитового крепления Щ1	
4.3 Установка прибора щитового крепления Щ2	
4.4 Установка прибора щитового крепления Щ11	
4.5 «Быстрая» замена прибора (корпус Щ11)	
4.6 Установка прибора DIN-реечного крепления Д	
5 Подключение	
5.1 Рекомендации по подключению	
5.2 Порядок подключения	
5.3 Назначение контактов клеммника	
5.4 Подключение датчиков	
5.4.1 Общие сведения	
5.4.2 Подключение ТС по трехпроводной схеме	
5.4.3 Подключение ТС по двухпроводной схеме	
5.4.4 Подключение ТП	
5.4.5 Подключение аналоговых датчиков	
5.5 Подключение нагрузки к ВУ	
5.5.1 Подключение нагрузки к ВУ типа Р	
5.5.2 Подключение нагрузки к ВУ типа К	
5.5.3 Подключение нагрузки к ВУ типа Т	
5.5.4 Подключение нагрузки к ВУ типа С	
5.5.5 Подключение нагрузки к ВУ типа И	
5.5.6 Подключение нагрузки к ВУ типа У	
6 Эксплуатация	
6.1 Принцип работы	
6.2 Управление и индикация	
6.3 Включение и работа	
7 Настройка	
7.1 Последовательность настройки	
7.2 Настройка режима индикации	
7.3 Настройка цифровой фильтрации измерений	
7.4 Коррекция измерительной характеристики датчиков	
7.5 Настройка вычисления квадратного корня	
7.6 Режим быстрого измерения	
7.7 Настройка режима работы ЛУ	
7.7.1 Настройка режима устройства сравнения	
7.7.2 Настройка режима П-регулятора	
7.7.3 Настройка режима трехпозиционного регулятора	
7.7.4 Настройка режима регистратора	35

7.7.5 Настройка безопасного состояния ВУ	35
8 Техническое обслуживание	36
8.1 Общие указания	
8.2 Поверка	
8.3 Проверка версии программного обеспечения	36
8.4 Юстировка	36
8.4.1 Общие сведения	36
8.4.2 Юстировка для работы с ТП и аналоговыми датчиками	37
8.4.3 Юстировка для работы с ТС	
8.4.4 Юстировка выходов типа «И»	39
8.4.5 Юстировка выходов типа «У»	40
9 Маркировка	42
10 Упаковка	42
11 Транспортирование и хранение	42
12 Комплектность	
13 Гарантийные обязательства	43
ПРИЛОЖЕНИЕ А. Настраиваемые параметры	

Предупреждающие сообщения

В данном руководстве применяются следующие предупреждения:

ОПАСНОСТЬ

Ключевое слово ОПАСНОСТЬ сообщает о непосредственной угрозе опасной ситуации, которая приведет к смерти или серьезной травме, если ее не предотвратить.

ВНИМАНИЕ

Ключевое слово ВНИМАНИЕ сообщает о **потенциально опасной ситуации**, которая может привести к небольшим травмам.

ПРЕДУПРЕЖДЕНИЕ

Ключевое слово ПРЕДУПРЕЖДЕНИЕ сообщает о **потенциально опасной ситуации**, которая может привести к повреждению имущества.

ПРИМЕЧАНИЕ

Ключевое слово ПРИМЕЧАНИЕ обращает внимание на полезные советы и рекомендации, а также информацию для эффективной и безаварийной работы оборудования.

Ограничение ответственности

Ни при каких обстоятельствах ООО «Производственное объединение OBEH» и его контрагенты не будут нести юридическую ответственность и не будут признавать за собой какие-либо обязательства в связи с любым ущербом, возникшим в результате установки или использования прибора с нарушением действующей нормативно-технической документации.

Введение

Настоящее Руководство по эксплуатации предназначено для ознакомления обслуживающего персонала с устройством, принципом действия, конструкцией, технической эксплуатацией и обслуживанием измерителя микропроцессорного двухканального 2TPM1 с универсальными измерительными входами (в дальнейшем по тексту именуемого «прибор» или «2TPM1»).

Подключение, регулировка и техобслуживание прибора должны производиться только квалифицированными специалистами после прочтения настоящего руководства по эксплуатации.

Прибор изготавливается в различных модификациях, указанных в коде полного условного обозначения.

Тип корпуса:

H – корпус настенного крепления;

Щ1 – корпус щитового крепления;

Щ11 – корпус щитового крепления со съемным клеммником;

Щ2 – корпус щитового крепления;

Д – корпус для установки на DIN-рейку.

Обозначение первичных преобразователей:

У – универсальные измерительные входы.

Тип встроенного ВУ1(2):

Р – контакты электромагнитного реле;

К – оптопара транзисторная *n-p-n*-типа;

Т – выход для управления внешним твердотельным реле;

С – оптопара симисторная;

 $\mathbf{V} - \mathbf{U} \mathbf{A} \mathbf{\Pi}$ «параметр – ток»;

У – ЦАП «параметр – напряжение».

Пример записи обозначения прибора в документации другой продукции, где он может быть применен:

Измеритель микропроцессорный двухканальный 2ТРМ1-Щ1.У.РИ ТУ 4217-041-46526536-2013.

Используемые аббревиатуры

- ВУ выходное устройство.
- **ХС** «холодный спай».
- **КХС** компенсация «холодного спая».
- **ЛУ** логическое устройство.
- ТП преобразователь термоэлектрический (термопара).
- ТС термопреобразователь сопротивления.
- **ЦАП** цифро-аналоговый преобразователь.

1 Назначение и функции прибора

Прибор предназначен для измерения и автоматического регулирования температуры (при использовании в качестве датчиков ТС или ТП), а также других физических параметров, значения которых датчиками могут быть преобразованы в напряжение постоянного тока или в унифицированный сигнал постоянного тока. Информация о любом из измеренных параметров отображается на встроенном цифровом индикаторе. Прибор используется вне сферы законодательно регулируемой метрологии.

Прибор соответствует ГОСТ Р 52931– 2008 и относится к изделиям государственной системы промышленных приборов и средств автоматизации.

Прибор зарегистрирован в Государственном реестре средств измерений.

Прибор может быть применен на промышленных объектах, подконтрольных Ростехнадзору.

Прибор позволяет выполнять следующие функции:

- измерение температуры и/или других физических величин (давления, влажности, расхода, уровня и т.п.) в двух различных точках с помощью стандартных датчиков, подключаемых к универсальным входам прибора;
- скоростные измерения (0,1 секунд) с использованием унифицированных датчиков тока или напряжения (только для приборов в корпусе Щ11);
- обработку входных сигналов:
- цифровую фильтрацию и коррекцию;
- масштабирование унифицированного сигнала для отображения на индикаторе физической величины:
- вычисление и индикацию квадратного корня из измеряемой величины;
- независимое регулирование двух измеряемых величин по двухпозиционному (релейному) закону;
- регулирование одной измеряемой величины по трехпозиционному закону (с двумя «уставками» и двумя устройствами управления на один канал контроля);
- сигнализация по П- или U-образной логике;
- вычисление разности двух измеряемых величин (ΔT=T1-T2);
- отображение выбранного текущего измерения на встроенном светодиодном цифровом индикаторе;
- сохранение при отключении питания в энергонезависимой памяти функциональных параметров прибора, заданных при настройке.
- формирование выходного тока 4...20 мА или напряжения 0...10 В для регистрации или управления исполнительными механизмами по П-закону (при использовании ВУ аналогового типа).

2 Технические характеристики и условия эксплуатации

2.1 Технические характеристики

Таблица 2.1 – Характеристики прибора

	Значение
Диапазон переменного напряжения питания для	
всех типов корпусов:	
• напряжение	90245 B
• частота	4763 Гц
Потребляемая мощность (для приборов с переменным напряжением питания)	не более 10 Вт
Диапазон постоянного напряжения питания	20375 B
(только для приборов с типом корпуса Щ11)	(номинальное напряжение 24 В)
Потребляемая мощность (только для приборов с типом корпуса Щ11)	не более 7 ВА
Напряжение встроенного источника питания постоянного тока	24 ± 2,4 B
Максимально допустимый ток встроенного источника питания	80 мА
Количество каналов	2
Время опроса входа:	
•TC	не более 0,8 сек
•T∏	не более 0,4 сек
унифицированные сигналы постоянного напряжения и тока	
• для приборов в корпусах Н, Щ1, Щ2 и Д	не более 0,4 сек
• для приборов в корпусе Щ11	не более 0,1 сек
Степень защиты корпуса:	
• настенный Н	IP44
• щитовые Щ1, Щ2, Щ11 (со стороны лицевой панели)	IP54
• DIN-реечный Д (со стороны лицевой панели)	IP20
Габаритные размеры прибора:	
• настенный Н	$(105 \times 130 \times 65) \pm 1 \text{ MM}$
• щитовой Щ1	$(96 \times 96 \times 65) \pm 1 \text{ MM}$
• щитовой Щ11	$(96 \times 96 \times 47) \pm 1 \text{ MM}$
• щитовой Щ2	$(96 \times 48 \times 100) \pm 1 \text{ MM}$
• DIN-реечный Д	$(72 \times 90 \times 58) \pm 1 \text{ MM}$
Масса прибора	не более 0,5 кг
Средний срок службы	8 лет

Таблица 2.2 – Датчики и входные сигналы

Датчик или входной сигнал	Диапазон измерений	Значение единицы младшего разряда ²⁾	Предел основной приведенной погрешности, %
Термопр	еобразователи сопротивл	тения по ГОСТ 6651-2009	3)
Cu 50 (α = 0,00426 °C-1)1)	−50+200 °C	0,1 °C	
50M (α = 0,00428 °C ⁻¹)	–200+200 °C	0,1 °C	
Pt 50 (α = 0,00385 °C-1)	–200+850 °C	0,1 °C	± 0,25
50Π (α = 0,00391 °C ⁻¹)	–240+1100 °C	0,1 °C	
Cu 100 (α = 0,00426 °C-1)	−50+200 °C	0,1 °C	

Продолжение таблицы 2.2

Датчик или входной сигнал	Диапазон измерений	Значение единицы младшего разряда ²⁾	Предел основной приведенной погрешности, %	
100M (α = 0,00428 °C ⁻¹)	–200+200 °C	0,1 °C		
Pt 100 (α = 0,00385 °C-1)	–200+850 °C	0,1 °C	-	
100Π (α = 0,00391 °C ⁻¹)	–240+1100 °C	0,1 °C	-	
100H (α = 0,00617 °C ⁻¹)	−60+180 °C	0,1 °C		
Pt 500 (α=0,00385 °C-1)	–200+850 °C	0,1 °C		
500Π (α = 0,00391 °C ⁻¹)	–250+1100 °C	0,1 °C	-	
Cu 500 (α = 0,00426 °C ⁻¹)	−50+200 °C	0,1 °C	-	
500M (α = 0,00428 °C ⁻¹)	–200+200 °C	0,1 °C	-	
500H (α = 0,00617 °C ⁻¹)	−60+180 °C	0,1 °C	-	
Cu 1000 (α = 0,00426 °C ⁻¹)	−50+200 °C	0,1 °C	-	
1000M (α = 0,00428 °C ⁻¹)	–200+200 °C	0,1 °C	-	
Pt 1000 (α = 0,00385 °C-1)	–200+850 °C	0,1 °C	-	
1000Π (α = 0,00391 °C-1)	–250+1100 °C	0,1 °C		
1000H (α = 0,00617 °C-1)	−60+180 °C	0,1 °C		
Термоэл	ектрические преобразова	тели по ГОСТ P 8.585-20	01	
TXK (L)	–200+800 °C	0,1 °C		
ТЖК (Ј)	–200+1200 °C	1,0 °C		
THH (N)	–200+1300 °C	1,0 °C		
TXA (K)	–200+1360 °C	1,0 °C		
ТПП (S)	−50+1750 °C	1,0 °C	± 0,5	
ТПП (R)	−50+1750 °C	1,0 °C		
ТПР (В)	+200+1800 °C	1,0 °C	(± 0,25) ⁴⁾	
TBP (A-1)	0+2500 °C	1,0 °C	-	
TBP (A-2)	0+1800 °C	1,0 °C	-	
TBP (A-3)	0+1800 °C	1,0 °C		
TMK (T)	–250+400 °C	0,1 °C		
Сигнал постоянного напряжения				
–50+50 мВ	0100 %	0,1; 1,0 %	± 0,25	
Унифицированные сигналы по ГОСТ 26.011-80				
01 B	0100 %	0,1; 1,0 %	± 0,25	
05 мА	0100 %	0,1; 1,0 %	± 0,20	
020 мА	0100 %	0,1; 1,0 %	± 0,25	
420 мА	0100 %	0,1; 1,0 %		

ПРИМЕЧАНИЕ

 $lpha = rac{R_{100} - R_0}{R_0 \cdot 100 \ ^{\circ}C}$, где R_{100} , R_0 - значения сопротивления термопреобразователя сопротивления по номинальной статической характеристике соответственно при 100 и 0 $^{\circ}$ C, и округляемый до пятого знака после запятой. $^{\circ}$ D при температуре выше 999,9 и ниже минус 199,9 $^{\circ}$ C цена единицы младшего разряда равна 1

3) допускается применение нестандартизованного медного TC с R_0 = 53 Oм, α = 0,00426 °C -1 и диапазоном измерений от минус 50 до +180 °C.

4) основная приведенная погрешность без компенсации холодного спая.

Таблица 2.3 – Параметры встроенных ВУ

Обозначение ВУ	Тип выходного элемента	Технические параметры		
	ВУ дискретного типа			
Р	Контакты электромагнитного реле	Ток не более 8 А при напряжении		
		не более 250 В (50 Гц)		
К	Оптопара транзисторная	Постоянный ток не более 400 мА при		
	n-p-n-типа	напряжении не более 60 В		
Т	Выход для управления внешним	Выходное напряжение 46 В,		
	твердотельным реле	постоянный ток не более 25 мА		
С	Оптопара симисторная	Ток не более 50 мА при переменном		
		напряжении не более 250 В (50 Гц)		
	ВУ аналогового типа	<u> </u>		
И	ЦАП «параметр – ток»	Постоянный ток 420 мА на		
		внешней нагрузке не более 1 кОм,		
		напряжение питания 1230 В		
У	ЦАП «параметр – напряжение»	Постоянное напряжение 010 В на		
		внешней нагрузке не менее 2 кОм,		
		напряжение питания 1630 В		

2.2 Условия эксплуатации

Прибор предназначен для эксплуатации при следующих условиях:

- закрытые взрывобезопасные помещения без агрессивных паров и газов;
- температура окружающего воздуха от минус 20 до +50 °C;

ПРЕДУПРЕЖДЕНИЕ

Для модификаций прибора, выпущенных по специальному заказу, допускается эксплуатация при температуре окружающего воздуха от минус 40 до +50 °C.

- верхний предел относительной влажности воздуха: не более 80 % при +35 °C и более низких температурах без конденсации влаги;
- атмосферное давление от 84 до 106,7 кПа.

По устойчивости к электромагнитным воздействиям и по уровню излучаемых радиопомех прибор соответствует оборудованию класса А по ГОСТ 51522-1999 (МЭК 61326-1).

По устойчивости к механическим воздействиям при эксплуатации прибор соответствует группе исполнения N2 по ГОСТ Р 52931–2008.

По устойчивости к климатическим воздействиям при эксплуатации прибор соответствует группе исполнения В4 по ГОСТ Р 52931–2008.

ПРЕДУПРЕЖДЕНИЕ

Требования в части внешних воздействующих факторов являются обязательными, так как относятся к требованиям безопасности.

3 Меры безопасности

ВНИМАНИЕ

На клеммнике присутствует опасное для жизни напряжение величиной до 250 В. Любые подключения к прибору и работы по его техническому обслуживанию следует производить только при отключенном питании прибора.

По способу защиты от поражения электрическим током прибор соответствует классу II по ГОСТ 12.2.007.0-75.

При эксплуатации, техническом обслуживании и поверке следует соблюдать требования ГОСТ 12.3.019-80, Правил эксплуатации электроустановок потребителей и Правил охраны труда при эксплуатации электроустановок потребителей.

Не допускается попадание влаги на контакты выходного разъема и внутренние электроэлементы прибора. Запрещено использовать прибор в агрессивных средах с содержанием в атмосфере кислот, щелочей, масел и т. п.

4 Монтаж

4.1 Установка прибора настенного крепления Н

Для установки прибора следует:

1. Закрепить кронштейн тремя винтами M4 × 20 на поверхности, предназначенной для установки прибора (см. рисунок 4.2).

i | **ПРИМ** Винты

ПРИМЕЧАНИЕ

Винты для крепления кронштейна не входят в комплект поставки.

- 2. Зацепить крепежный уголок на задней стенке прибора за верхнюю кромку кронштейна.
- Прикрепить прибор к кронштейну винтом из комплекта поставки.

Демонтаж прибора следует производить в обратном порядке.

ПРЕДУПРЕЖДЕНИЕ

Провода подключаются при снятой крышке прибора. Для удобства подключения следует зафиксировать основание прибора на кронштейне крепежным винтом.

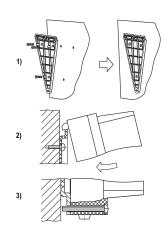


Рисунок 4.1 – Монтаж прибора настенного крепления

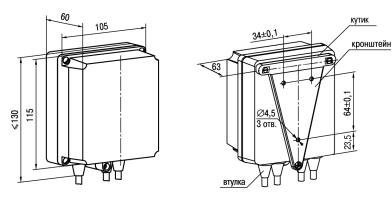


Рисунок 4.2 - Габаритные размеры корпуса Н

i

ПРИМЕЧАНИЕ

Втулки следует подрезать в соответствии с диаметром вводного кабеля.

4.2 Установка прибора щитового крепления Щ1

Для установки прибора следует:

- 1. Подготовить на щите управления монтажный вырез для установки прибора (см. рисунок 4.4).
- 2. Установить прокладку на рамку прибора для обеспечения степени защиты IP54.
- 3. Вставить прибор в монтажный вырез.
- 4. Вставить фиксаторы из комплекта поставки в отверстия на боковых стенках прибора.
- 5. С усилием завернуть винты M4 × 35 из комплекта поставки в отверстиях каждого фиксатора так, чтобы прибор был плотно прижат к лицевой панели щита.

Демонтаж прибора следует производить в обратном порядке.

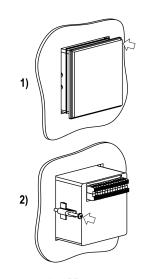


Рисунок 4.3 – Монтаж прибора щитового крепления

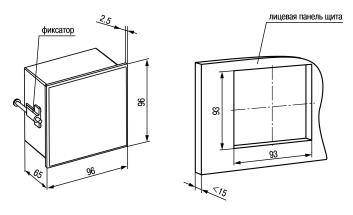


Рисунок 4.4 – Габаритные размеры корпуса Щ1

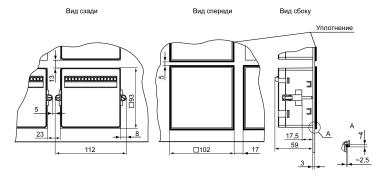


Рисунок 4.5 – Прибор в корпусе Щ1, установленный в щит толщиной 3 мм

4.3 Установка прибора щитового крепления Щ2

Для установки прибора следует:

- 1. Подготовить на щите управления монтажный вырез для установки прибора (см. рисунок 4.7).
- 2. Установить прокладку на рамку прибора для обеспечения степени защиты IP54.
- 3. Вставить прибор в монтажный вырез.
- 4. Вставить фиксаторы из комплекта поставки в отверстия на боковых стенках прибора.
- 5. С усилием завернуть винты M4 × 35 из комплекта поставки в отверстиях каждого фиксатора так, чтобы прибор был плотно прижат к лицевой панели щита.

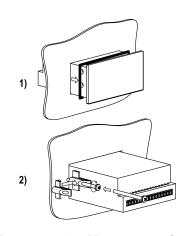


Рисунок 4.6 – Монтаж прибора щитового крепления

Демонтаж прибора следует производить в обратном порядке.

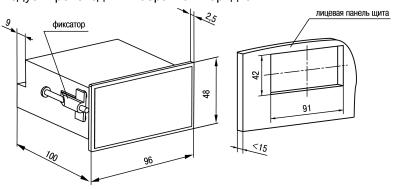


Рисунок 4.7 – Габаритные размеры корпуса Щ2

Рисунок 4.8 – Прибор в корпусе Щ2, установленный в щит толщиной 3 мм

4.4 Установка прибора щитового крепления Щ11

Для установки прибора следует:

- 1. Подготовить на щите управления монтажный вырез для установки прибора (см. рисунок 4.10).
- 2. Установить прокладку на рамку прибора для обеспечения степени защиты IP54.
- 3. Вставить прибор в монтажный вырез.
- 4. Вставить фиксаторы из комплекта поставки в отверстия на боковых стенках прибора.
- 5. С усилием завернуть винты M4 × 35 из комплекта поставки в отверстиях каждого фиксатора так, чтобы прибор был плотно прижат к лицевой панели щита.

Демонтаж прибора следует производить в обратном порядке.

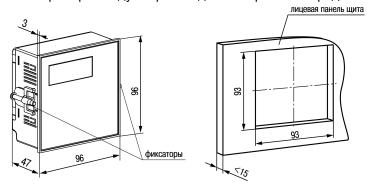


Рисунок 4.9 – Монтаж прибора в корпусе Щ11

Рисунок 4.10 – Габаритные размеры корпуса Щ11

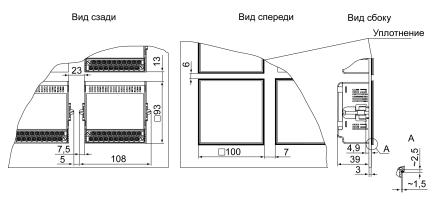


Рисунок 4.11 – Прибор в корпусе Щ11, установленный в щит толщиной 3 мм

4.5 «Быстрая» замена прибора (корпус Щ11)

Конструкция клеммника прибора, выполненного в корпусе Щ11, позволяет оперативно заменить прибор без демонтажа подключенных к нему внешних линий связи.

Для замены прибора следует:

- 1. Обесточить все линии связи, подходящие к прибору, в т. ч. линии питания.
- 2. Открутить два крепежных винта по краям клеммной колодки прибора.
- 3. Отделить съемную часть колодки от прибора вместе с подключенными внешними линиями связи с помощью отвертки или другого подходящего инструмента.
- 4. Вынуть прибор из щита, а на его место установить другой с предварительно удаленной разъемной частью клемм.
- 5. Подсоединить к установленному прибору снятую часть клемм с подключенными внешними линиями связи.
- 6. Закрутить крепежные винты клеммной колодки.

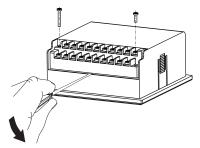


Рисунок 4.12 – «Быстрая» замена прибора

4.6 Установка прибора DIN-реечного крепления Д

Для установки прибора следует:

- 1. Подготовить место на DIN-рейке для установки прибора (см. рисунок 4.14).
- 2. Установить прибор на DIN-рейку.
- 3. С усилием придавить прибор к DIN-рейке в направлении, показанном стрелкой, до фиксации защелки.

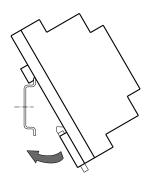
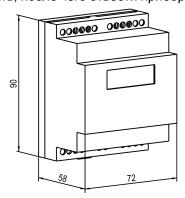



Рисунок 4.13 – Монтаж прибора с креплением на DIN-рейку

Для демонтажа прибора следует:

- 1. Отсоединить линии связи с внешними устройствами.
- 2. В проушину защелки вставить острие отвертки.
- 3. Защелку отжать, после чего отвести прибор от DIN-рейки.

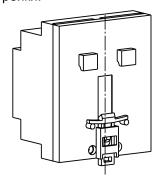


Рисунок 4.14 – Габаритные размеры корпуса Д

5 Подключение

5.1 Рекомендации по подключению

Для обеспечения надежности электрических соединений следует использовать медные кабели и провода с однопроволочными или многопроволочными жилами. Концы проводов следует зачистить. Многопроволочные жилы следует залудить или использовать кабельные наконечники.

Требования к сечениям жил кабелей указаны на рисунке ниже.



Рисунок 5.1 – Требования к сечениям жил кабелей и длине зачистки

Общие требования к линиям соединений:

- во время монтажа кабелей следует выделить сигнальные линии связи, соединяющие прибор с датчиком в самостоятельную трассу (или несколько трасс). Трассу (или несколько трасс) расположить отдельно от силовых кабелей, а также от кабелей, создающих высокочастотные и импульсные помехи;
- для защиты входов прибора от влияния промышленных электромагнитных помех следует экранировать линии связи прибора с датчиком. В качестве экранов могут быть использованы специальные кабели с экранирующими оплетками или заземленные стальные трубы подходящего диаметра. Экраны кабелей с экранирующими оплетками следует подключить к контакту функционального заземления (FE) в щите управления;
- фильтры сетевых помех следует устанавливать в линиях питания прибора;
- искрогасящие фильтры следует устанавливать в линиях коммутации силового оборудования.

Монтируя систему, в которой работает прибор, следует учитывать правила организации эффективного заземления:

- все заземляющие линии следует прокладывать по схеме «звезда» с обеспечением хорошего контакта;
- все заземляющие цепи должны быть выполнены проводами наибольшего сечения;
- запрещается объединять клеммы прибора и заземляющие линии.

5.2 Порядок подключения

ОПАСНОСТЬ

После распаковки прибора следует убедиться, что во время транспортировки прибор не был поврежден.

Если прибор находился длительное время при температуре ниже минус 20 °C, то перед включением и началом работ следует выдержать его в помещении с температурой, соответствующей рабочему диапазону, в течение 30 минут.

Для подключения прибора следует выполнить действия:

1. Подключить прибор к источнику питания.

ВНИМАНИЕ

Перед подачей питания на прибор следует проверить правильность подключения напряжения питания и его уровень.

- 2. Подключить линии связи «прибор датчики» к первичным преобразователям и входам прибора.
- 3. Подключить линии связи «прибор нагрузка» к исполнительным механизмам и выходам прибора.
- 4. Подать питание на прибор.
- 5. Выполнить настройку прибора.
- 6. Снять питание.

5.3 Назначение контактов клеммника

ПРЕДУПРЕЖДЕНИЕ

На рисунках серым цветом отмечены неиспользуемые клеммы.



Рисунок 5.2 – Назначение контактов клеммной колодки прибора в настенном H и щитовом Щ1, Щ2 типах корпусов

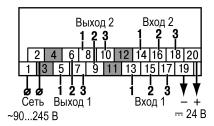


Рисунок 5.3 – Назначение контактов клеммной колодки прибора в корпусе Щ11

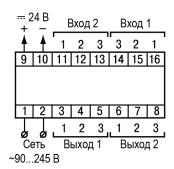


Рисунок 5.4 – Назначение контактов клеммной колодки прибора в DIN-реечном Д корпусе

5.4 Подключение датчиков

5.4.1 Общие сведения

Входные измерительные устройства в приборе являются универсальными, т. е. к ним можно подключать любые первичные преобразователи (датчики) из перечисленных в таблице 2.2. К входам прибора можно подключить одновременно два датчика разных типов в любых сочетаниях.

ВНИМАНИЕ

Для защиты входных цепей прибора от возможного пробоя зарядами статического электричества, накопленного на линиях связи «прибор – датчик», перед подключением к клеммнику прибора их жилы следует на 1–2 секунды соединить с винтом функционального заземления (FE) щита.

Во время проверки исправности датчика и линии связи следует отключить прибор от сети питания. Для избежания выхода прибора из строя при «прозвонке» связей следует использовать измерительные

устройства с напряжением питания не более 4,5 В. При более высоких напряжениях питания этих устройств отключение датчика от прибора обязательно.

Параметры линии соединения прибора с датчиком приведены в таблице 5.1.

Таблица 5.1 – Параметры линии связи прибора с датчиками

Тип датчика	Длина линий, м, не более	Сопротивление линии, Ом, не более	Исполнение линии
TC	100	15	Двух- или трехпроводная. Провода равной длины и сечения
тп	20	100	Термоэлектродный кабель (компенсационный)
Унифицированный сигнал постоянного тока	100	100	Двухпроводная
Унифицированный сигнал напряжения постоянного тока	100	5	Двухпроводная

ПРЕДУПРЕЖДЕНИЕ

На схемах подключения вместо номера входа (выхода) указан Х (например, Х-1).

5.4.2 Подключение ТС по трехпроводной схеме

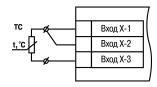


Рисунок 5.5 – Трехпроводная схема подключения ТС

В приборе используется трехпроводная схема подключения ТС.

Допускается соединение ТС с прибором по двухпроводной линии только с обязательным выполнением определенных условий (см. раздел ниже).

5.4.3 Подключение ТС по двухпроводной схеме

Соединение ТС с прибором по двухпроводной схеме следует производить в случае невозможности использования трехпроводной схемы, например, при установке прибора на объектах, оборудованных ранее проложенными двухпроводными монтажными трассами.

Для компенсации паразитного сопротивления проводов следует выполнить действия:

- Перед началом работы установить перемычки между контактами Вход X-1 и Вход X-2 клеммника прибора, а двухпроводную линию подключить к контактам Вход X-2 и Вход X-3.
- 2. Подключить к противоположным от прибора концам линии связи «TC прибор» вместо TC магазин сопротивлений с классом точности не более 0,05 (например, P4831).

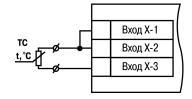


Рисунок 5.6 – Двухпроводная схема подключения TC

- 3. Установить на магазине сопротивлений значение, равное сопротивлению ТС при температуре 0 °C (в зависимости от типа датчика).
- 4. Подать на прибор питание.
- 5. Через 15–20 секунд по показаниям цифрового индикатора определить величину отклонения температуры от 0 °C по каждому каналу измерения.
- 6. Ввести в память прибора значение коррекции **сдвиг характеристики** для каждого канала (*b l- l* и *b2- l*), равное по величине показаниям прибора и взятое с противоположным знаком.
- 7. Проверить правильность задания коррекции. Для этого выйти из настройки и убедиться, что на цифровом индикаторе отображается значение 0.0 ± 0.2 °C.

8. Отключить питание прибора, отсоединить линию связи от магазина сопротивлений и подключить ее к ТС.

5.4.4 Подключение ТП

ВНИМАНИЕ

Запрещается использовать ТП с неизолированным рабочим спаем.

В приборе предусмотрена схема автоматической компенсации температуры свободных концов ТП. Датчик температуры «холодного спая» установлен рядом с клеммником прибора.

Прибор имеет функцию «внешней» компенсации «холодного спая» ТП. Для настройки функции необходимо задействовать два входа прибора (далее «вход измерения» и «вход компенсации») и выполнить действия:

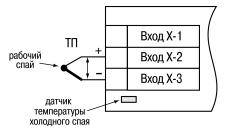


Рисунок 5.7 – Схема подключения термопары

- 1. К входу измерения подключить ТП.
- 2. К входу компенсации подключить датчик, который будет измерять температуру в месте «холодного спая». Тип внешнего датчика может быть любым из поддерживаемых прибором.
- 3. Для входа измерения в параметре ($b \vdash \Box$ или $b \supseteq \neg \Box$) указать код типа подключенной ТП.
- 4. Для входа компенсации в параметре (*b2-0* или *b l-0*) указать код типа подключенного внешнего датчика.
- 5. Для входа измерения в параметре (*b !-Ч* или *b-2-Ч*) указать номер входа компенсации. По умолчанию установлен код *I* компенсация по встроенному датчику. Параметр (*b !-Ч* или *b-2-Ч*) отображается только при настроенном типе датчика ТП на входе измерения.

ПРЕДУПРЕЖДЕНИЕ

Для отключения компенсации «холодного спая» необходимо ввести код *Ш* (см. раздел 7.1). Компенсация «холодного спая» будет вновь включена только при изменении кода датчика или новом включении прибора.

5.4.5 Подключение аналоговых датчиков

Подключать датчики с выходным сигналом в виде постоянного напряжения (от минус 50,0 до 50,0 мВ или от 0 до 1,0 В) можно непосредственно к входным контактам прибора.

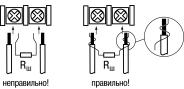


Рисунок 5.8 - Подключение шунтирующего резистора

Подключение датчиков с выходом в виде тока (0...5,0 мА, 0...20,0 мА или 4,0... 20,0 мА) следует выполнять только после установки шунтирующего резистора сопротивлением 49,9 Ом (допуск не более 0,1 %), подключение которого необходимо производить в соответствии с рисунком 5.10. Вывод резистора следует заводить с той же стороны винтовой клеммы, что и провод от датчика. При использовании провода сечением более 0,35 мм конец провода и вывод резистора необходимо скрутить или спаять.

ВНИМАНИЕ

Невыполнение этого требования может привести к пропаданию контакта между выводом резистора и клеммы, что повлечет повреждение входа прибора!

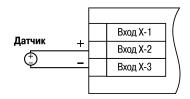


Рисунок 5.9 – Схема подключения активного датчика с выходом в виде напряжения от –50 до 50 мВ или от 0 до 1 В

Рисунок 5.10 – Схема подключения пассивного датчика с токовым выходом от 0 до 5 мА или от 0(4) до 20 мА $R_{\rm m}$ = 49,9 ± 0,025 Oм

Схема подключения пассивного датчика с питанием от прибора приведена на рисунке 5.11.

ВНИМАНИЕ

При коротком замыкании контактов «+» и «–» встроенного источника питания прибор перезагружается.

ПРЕДУПРЕЖДЕНИЕ

Максимальный выходной ток встроенного источника питания (для модификаций с переменным напряжением питания 90 ... 245 В) 80 мА.

Максимальный выходной ток встроенного источника питания (для модификаций с постоянным напряжением питания 20...375 В) 50 мА.

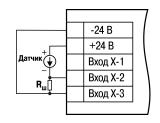


Рисунок 5.11 – Схема подключения пассивного датчика с питанием от прибора

5.5 Подключение нагрузки к ВУ

5.5.1 Подключение нагрузки к ВУ типа Р

Схема подключения нагрузки к ВУ типа Р приведена на рисунке 5.12.

ПРЕДУПРЕЖДЕНИЕ

Коммутируемые силовые цепи должны иметь напряжение не более 230 В и рабочий ток не более 8 А.

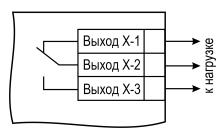


Рисунок 5.12 – Схема подключения нагрузки к ВУ типа Р

5.5.2 Подключение нагрузки к ВУ типа К

Схема подключения нагрузки к ВУ приведена на рисунке 5.13. Чтобы транзистор не вышел из строя из-за большого тока самоиндукции, следует установить диод VD1 параллельно обмотке внешнего реле P1.

ПРЕДУПРЕЖДЕНИЕ

Характеристики низковольтного реле P1: напряжение не более 50 В при токе не более 400 мА.

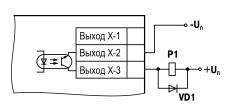


Рисунок 5.13 – Схема подключения нагрузки к ВУ типа К

5.5.3 Подключение нагрузки к ВУ типа Т

Выход «Т» имеет два состояния: с низким (от 0 до 1 В) и высоким (от 4 до 6 В) уровнем напряжения. В приборе используются выходы, выполненные на основе транзисторного ключа n-p-n-типа.

ВНИМАНИЕ

Максимальная длина соединительного кабеля между прибором с выходом Т и твердотельным реле не должна превышать 3 м.

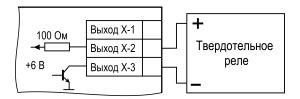


Рисунок 5.14 – Схема подключения нагрузки к ВУ типа Т

Выходной элемент не имеет гальванической изоляции. Гальваническую изоляцию обеспечивает само твердотельное реле.

5.5.4 Подключение нагрузки к ВУ типа С

ВУ типа С имеет внутреннюю схему перехода через ноль и включается в цепь управления мощного симистора или пары встречно-параллельно включенных тиристоров через ограничивающий резистор R1 (см. рисунки далее). Величина сопротивления резистора определяет ток управления симистора. Нагрузочная способность выхода — ток не более 50 мА при переменном напряжении не более 250 В. Для предотвращения пробоя тиристоров из-за высоковольтных скачков напряжения в сети к их выводам рекомендуется подключать фильтрующую RC цепочку (R2C1).

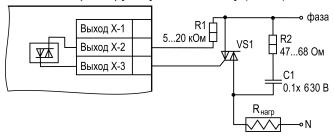


Рисунок 5.15 - Схема подключения силового симистора к ВУ типа С

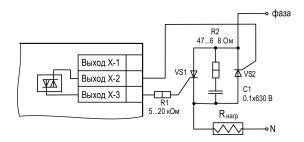


Рисунок 5.16 – Схема встречно-параллельного подключения двух тиристоров к ВУ типа С 5.5.5 Подключение нагрузки к ВУ типа И

Схема подключения нагрузки к ВУ приведена на рисунке 5.17.

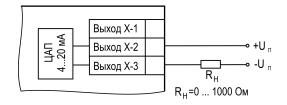


Рисунок 5.17 - Схема подключения нагрузки к ВУ типа И

Для питания ВУ возможно использование встроенного источника 24 В.

ВНИМАНИЕ

Напряжение источника питания ЦАП не должно быть более 30 В.

Сопротивление нагрузки R_H зависит от напряжения источника питания U_Π и выбирается по графику (см. рисунок 5.18).

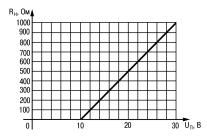


Рисунок 5.18 - График зависимости R_н(U_n)

Если для измерения токового сигнала используется измерительный шунт R_u и его номинал меньше необходимого сопротивления нагрузки, следует использовать добавочный ограничивающий резистор R_{orp} (см. рисунок 5.19).

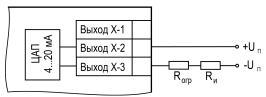


Рисунок 5.19 – Схема подключения нагрузки с измерительным шунтом

Сопротивление ограничивающего резистора вычисляется по формуле: $\mathbf{R}_{orp} = \mathbf{R}_{H} - \mathbf{R}_{u}$

ВНИМАНИЕ

Допускается применение резистора с величиной сопротивления, отличающейся от рассчитанной не более чем на ± 10 %.

Типовые соотношения:

$$U_{\Pi} = 12 \text{ B}, R_{H} = R_{M} = 100 \text{ OM};$$

$$U_{\Pi}$$
 = 24 B, R_{H} = 700 Om (R_{u} = 100 Om, R_{OFP} = 620 Om).

5.5.6 Подключение нагрузки к ВУ типа У

Схема подключения нагрузки приведена на рисунке 5.20.

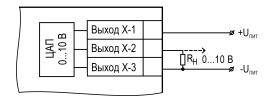


Рисунок 5.20 - Схема подключения нагрузки к ВУ типа У

Сопротивление нагрузки R_{H} , подключаемой к ЦАП, должно быть не менее 2 кОм. Для питания ВУ возможно использование встроенного источника питания 24 В.

Напряжение источника питания ЦАП не должно превышать 30 В.

6 Эксплуатация

6.1 Принцип работы

Функциональная схема прибора приведена на рисунке 6.1.

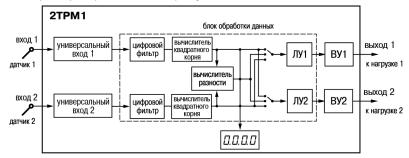


Рисунок 6.1 - Функциональная схема прибора

При обработке измеренного значения выполняются следующие функции:

- цифровая фильтрация измерений (для ослабления влияния внешних импульсных помех на эксплуатационные характеристики прибора);
- коррекция измерительной характеристики датчиков (для устранения начальной погрешности преобразования входных сигналов и погрешностей, вносимых соединительными проводами);
- вычисление квадратного корня с учетом настроек масштабирования. Выполняется для работы с унифицированными датчиками, сигнал которых пропорционален квадрату измеряемой величины (например, датчики расхода жидкости или газа).

Каждое измеренное значение или разность между ними может использоваться как входное значение для одного из логических устройств (ЛУ1 и ЛУ2). ЛУ анализируют входное значение и формируют выходной сигнал в соответствии с выбранными параметрами настройки. Каждое из ВУ может быть назначено одному из ЛУ и использоваться для управления, аварийной сигнализации или передачи сигнала. В зависимости от модификации прибора ВУ могут быть аналогового или дискретного типа.

6.2 Управление и индикация

На лицевой панели прибора расположены элементы индикации и управления (см. рисунок 6.2):

- четырехразрядный семисегментный цифровой индикатор;
- семь светодиодов;
- три кнопки.

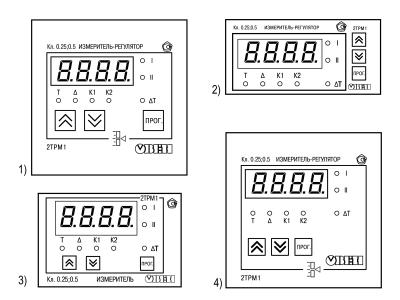


Рисунок 6.2 – Лицевая панель прибора для корпусов: 1) настенного H и щитового крепления Щ1; 2) щитового Щ2; 3) DIN-реечного Д; 4) щитового Щ11

Таблица 6.1 – Назначение цифрового индикатора

Режим эксплуатации прибора	Отображаемая информация
Работа	Измеренные значения (T1, T2 и ΔT)
Настройка	Обозначение и значения параметров настройки
Авария	Обозначение ошибки

Таблица 6.2 - Назначение светодиодов

Светодиод	Состояние	Значение	
К1	Светится	ВУ1 в состоянии ВКЛЮЧЕНО (только для ВУ дискретного типа)	
К2	Светится	ВУ2 в состоянии ВКЛЮЧЕНО (только для ВУ дискретного типа)	
ı	Светится На цифровом индикаторе выводятся показания первого канала измерения (Т1)		
	Мигает Аварийная ситуация на первом входе		
II	Светится На цифровом индикаторе выводятся показания второго канала измерения (T2)		
	Мигает Аварийная ситуация на втором входе		
ΔΤ	Светится	На цифровом индикаторе выводится значение разности каналов (ΔT)	
Т	Светится	Включен режим ввода значения уставки регулируемой	
		величины	
Δ	Светится	Включен режим ввода значения гистерезиса компаратора или полосы пропорциональности П-регулятора	

Таблица 6.3 - Назначение кнопок

Кнопка	Режим эксплуатации прибора	Назначение
ПРОГ.	Работа	Нажатие < 1 с: • Вход на первый уровень настройки; Нажатие > 3 с: • Вход на второй уровень настройки
	Настройка	Вход в группу параметров настройки;Вход в режим редактирования параметра
	Работа	Смена канала (I, II или ΔТ), выводимого на индикацию
<u></u>	Настройка	 Навигация по меню настройки; Увеличение/уменьшение значения параметра (для ускорения зажать кнопку)

6.3 Включение и работа

Во время работы прибор управляет внешними исполнительными устройствами в соответствии с заданными режимами работы ЛУ. Оператор может осуществлять визуальный контроль за работой ВУ дискретного типа по светодиодам К1 и К2.

Во время работы прибор проверяет исправность подключенных датчиков. Аварийными ситуациями по входу считаются следующие:

- выход из строя датчика (обрыв или короткое замыкание ТС, обрыв ТП или унифицированного датчика);
- выход измеряемой величины за диапазон измерения (см. таблицу 2.1)

При возникновении аварии по входу прибор переходит в следующее состояние:

- мигает светодиод канала, на котором обнаружена авария;
- на цифровой индикатор выводится сообщение аварийной ситуации (см. Приложение Возможные неисправности и способы их устранения).

ПРЕДУПРЕЖДЕНИЕ

Прибор индицирует:

- температуру «холодного спая» в случае короткого замыкания ТП;
- значение нижнего предела диапазона в случае короткого замыкания датчиков 0...1 В, замыкания шунта 0...5 мА, 0...20 мА или обрыва датчиков 0...5 мА, 0...20 мА;
- значение середины диапазона в случае короткого замыкания датчика 50 ... + 50 мВ.

7 Настройка

7.1 Последовательность настройки

Настройка прибора предназначена для задания и записи настраиваемых параметров в энергонезависимую память прибора.

Прибор имеет два уровня настройки.

На первом уровне осуществляется просмотр и изменение значений параметров регулирования:

- уставки Т для каждого ЛУ;
- гистерезиса Δ для каждого ЛУ.

Для доступа к параметрам настройки следует нажать кнопку

Если в течение 20 секунд при настройке не производится операций с кнопками, прибор автоматически возвращается к работе.

Последовательность работы с прибором на первом уровне настройки приведена на рисунке 7.1.

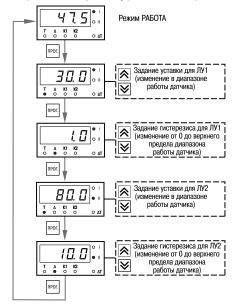


Рисунок 7.1 – Последовательность работы с прибором на первом уровне настройки

На втором уровне настройки осуществляется просмотр и необходимое изменение функциональных параметров прибора. Функциональные параметры прибора разделены на группы:

- группа \Re (параметры, определяющие логику работы прибора);
- группа ь (параметры, отвечающие за настройку измерительной части прибора).

Для входа на второй уровень настройки следует нажать кнопку и удерживать кнопку прог. в течении 3 секунд.

ВНИМАНИЕ

! В – Код сброса настраиваемых параметров до заводских установок. В Сод отключения компенсации «холодного спая».

Последовательности процедуры настройки прибора на втором уровне для обеих групп параметров приведены на рисунках ниже.

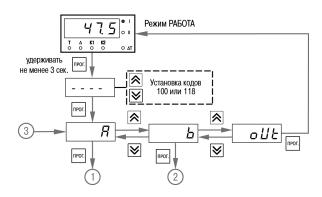


Рисунок 7.2 – Последовательность работы с прибором на втором уровне настройки

Рисунок 7.3 – Последовательность работы с прибором на втором уровне настройки (для группы параметров A)

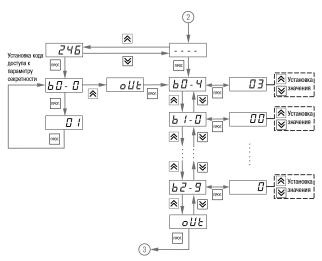


Рисунок 7.4 – Последовательность работы с прибором на втором уровне настройки (для группы параметров b)

ПРЕДУПРЕЖДЕНИЕ

Подробное описание параметров приведено в Приложении Настраиваемые параметры.

Для защиты параметров от несанкционированного изменения служат параметры секретности $R\square - \square$ и $b\square - \square$. В них устанавливается запрет на изменение параметров соответствующей группы и параметров регулирования. При установленном запрете разрешается только просмотр ранее заданных значений параметров этих групп.

7.2 Настройка режима индикации

Режим индикации задается при установке соответствующего значения в параметре *Ы*І-Ч. Вывод текущих значений измеряемых величин на цифровой индикатор осуществляется в одном из следующих режимов:

- 00 на индикацию выводится показание только первого канала измерения. Режим применяется в случае использования прибора в качестве трехпозиционного регулятора, работающего от одного датчика, а также при использовании прибора как одноканального измерителя-регулятора. Опрос второго датчика при этом не происходит.
- 01 на индикацию поочередно выводятся показания первого и второго каналов измерения. Смена каналов осуществляется нажатием кнопок или
- 02 на индикацию поочередно выводятся показания первого и второго каналов. Смена каналов осуществляется автоматически каждые 6 секунд.
- 03 на индикацию поочередно выводятся разность показаний входов ∆Т, показания первого канала, показания второго канала. Смена каналов осуществляется нажатием кнопок или Используется при работе с разностью входных сигналов.
- 04 на индикацию поочередно выводятся разность показаний входов ∆Т, показания первого канала, показания второго канала. Смена каналов осуществляется автоматически каждые 6 секунд. Используется при работе с разностью входных сигналов.

\triangle

ВНИМАНИЕ

Если вычисленная разность ΔТ выходит за пределы индикации, на индикатор будет выведено соответствующее сообщение об ошибке. Для корректного отображения вычисленной разности необходимо, чтобы порядки измеряемых величин совпадали (Ь - 7 = Ь2-7).

7.3 Настройка цифровой фильтрации измерений

Для дополнительной защиты от электромагнитных помех в приборе предусмотрен программный цифровой фильтр низких частот. Цифровая фильтрация осуществляется независимо для каждого входа и проводится в два этапа.

На первом этапе фильтрации из текущих измерений входных параметров отфильтровываются значения, имеющие явно выраженные «провалы» или «выбросы». Для этого прибор вычисляет разность между результатами измерений входной величины, выполненных в двух последних циклах опроса, и сравнивает ее с заданным значением, называемым полосой фильтра. Если вычисленная разность превышает заданный предел, то производится повторное измерение, полученный результат отбрасывается, а значение полосы фильтра удваивается. В случае подтверждения нового значения фильтр перестраивается (т. е. полоса фильтра уменьшается до исходной) на новое стабильное состояние измеряемой величины. Такой алгоритм позволяет защитить прибор от воздействия единичных импульсных и коммутационных помех, возникающих на производстве при работе силового оборудования.

На втором этапе фильтрации осуществляется сглаживание (демпфирование) сигнала с целью устранения шумовых составляющих. Основной характеристикой сглаживающего фильтра является «постоянная времени фильтра» – интервал, в течение которого изменение выходного сигнала фильтра достигает значения **В.Б.З** от изменения входного сигнала.

Временные диаграммы работы цифровых фильтров представлены на рисунке 7.5.

Полоса фильтра задается в единицах измеряемой величины параметрами *Ь 1-В* и *Ь2-В* для первого и второго каналов соответственно. Уменьшение полосы фильтра улучшает помехозащищенность канала измерения, но приводит к замедлению реакции прибора на быстрое изменение входной величины. Поэтому при низком уровне помех или при работе с быстро меняющимися процессами рекомендуется увеличить значение полосы фильтра или отключить действие этого параметра. При работе в условиях сильных помех для устранения их влияния на работу прибора необходимо уменьшить значение полосы фильтра. Для отключения фильтра следует установить нулевое значение параметра Ь 1-В (Ь2-В). Постоянная времени фильтра задается в секундах параметром Ь 1-9 и Ь2-9 для каждого входа. Увеличение значения постоянной времени фильтра улучшает помехозащищенность канала измерения, но одновременно увеличивает его инерционность, т. е. реакция прибора на быстрые изменения входной величины замедляется. Для отключения фильтра следует установить нулевое значение параметра *Ь 1-9 (Ь2-9*).

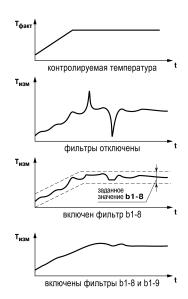


Рисунок 7.5 – Временные диаграммы работы цифровых фильтров

7.4 Коррекция измерительной характеристики датчиков

Измеренное прибором значение следует откорректировать для устранения начальной погрешности преобразования входных сигналов и погрешностей, вносимых соединительными проводами. В приборе есть два типа коррекции, позволяющие осуществлять сдвиг или наклон характеристики на заданную величину.

ВНИМАНИЕ

При подключении ТС по двухпроводной схеме следует выполнять коррекцию **сдвиг характеристики** в обязательном порядке. Определение значения параметра **сдвиг характеристики** производится по методике, приведенной в разделе 5.4.3.

Сдвиг характеристики применяется:

- для компенсации погрешностей, вносимых сопротивлением подводящих проводов при использовании двухпроводной схемы подключения ТС;
- при отклонении у ТС значения R₀.

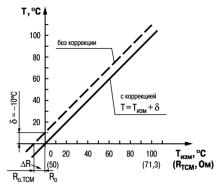


Рисунок 7.6 – Коррекция «сдвиг характеристики»

Такая коррекция осуществляется путем прибавления к измеренной величине значения δ. Значение δ задается параметрами *b l- l* и *b2- l* для первого и второго каналов измерения соответственно.

Пример сдвига характеристики для датчика TCM (Cu50) графически представлен на рисунке 7.6.

Изменение наклона характеристики осуществляется умножения измеренной (и скорректированной «сдвигом», если эта коррекция необходима) величины на поправочный коэффициент В. значение которого задается параметрами Ь 1-2 и Ь2-2 для первого и второго каналов измерения соответственно. Пример изменения наклона измерительной характеристики графически представлен на рисунке 7.7. Данный вид коррекции используется, как правило, для компенсации погрешностей самих датчиков (например, при отклонении у термометров сопротивления параметра α от стандартного значения) или погрешностей, связанных с разбросом сопротивлений шунтирующих резисторов (при работе преобразователями, выходным сигналом которых является ток).

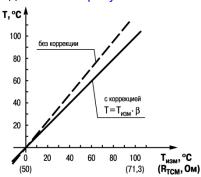


Рисунок 7.7 – Коррекция «наклон характеристики»

Значение поправочного коэффициента β задается в безразмерных единицах в диапазоне от **17.900** до **1.100** и перед установкой определяется по формуле:

$$\beta = \frac{\Pi_{\Phi \text{akt}}}{\Pi_{\text{M3M}}} \tag{7.1}$$

где

Пфакт – фактическое значение контролируемой входной величины;

П_{изм} – измеренное прибором значение той же величины.

Определить необходимость введения поправочного коэффициента можно, измерив максимальное или близкое к нему значение параметра, где отклонение наклона измерительной характеристики наиболее заметно.

7.5 Настройка вычисления квадратного корня

Данная функция предназначена для датчиков с выходным сигналом, пропорциональным квадрату измеряемого сигнала.

Для включения/выключения вычислителя необходимо установить соответствующие значения параметров *b 1-3* и *b2-3*. Вычисление квадратного корня Т с учетом настроек масштабирования происходит по следующей формуле:

$$T = \Pi_{\mathrm{H}} + \sqrt{I_x} \left(\Pi_{\mathrm{B}} - \Pi_{\mathrm{H}} \right) \tag{7.2}$$

где

 Π_{H} – заданное нижнее значение границы диапазона измерения (*b l-5*, *b*2*-5*);

 Π_B – заданное верхнее значение границы диапазона измерения (*b* 1-5, *b*2-5);

 I_x — значение сигнала с датчика в относительных единицах от 0.000 до 1.000.

7.6 Режим быстрого измерения

При использовании датчиков с унифицированным сигналом тока и напряжения возможна работа в режиме «быстрого измерения». Время измерения и реакции на изменение входного сигнала тока и напряжения этом случае составляет не более 0,1 секунды на канал. Режим быстрого измерения включается и выключается установкой соответствующего значения параметра $b \Box - 5$ – «Режим быстрого

измерения». При включении режима измерения производятся на обоих входах, при этом прибор автоматически начинает быстрые измерения на том входе, где установлен унифицированный датчик. Общее время реакции на изменение входного сигнала определяется как сумма времени опроса каждого входа, зависящего от установленного на входе типа датчика:

- для унифицированных датчиков не более 0,1 секунды;
- для ТП и ТС не более 1 секунды.

Если на одном входе установлен TC, а на другом датчик тока, то время реакции будет не более 1,1 секунды. Для получения быстрого измерения (0,1 секунды) необходимо отключить один из входов (**bx-0** = oFF).

7.7 Настройка режима работы ЛУ

ЛУ может работать в следующих режимах:

- устройство сравнения;
- П-регулятор;
- регистратор.

Для настройки работы ЛУ следует установить параметры:

- режим работы ЛУ (Я !- ! и Я2- !);
- сигнал на входе ЛУ1 (*R I-2* и *R2-2*);
- дополнительные параметры в зависимости от выбранного режима работы ЛУ.

Режим работы для каждого из ЛУ устанавливается соответствующим кодом в параметрах Я І- І и Я2- І:

Режим работы ЛУ	Значение параметра	Комментарий	
ЛУ выключено	oFF	ЛУ не работает, переходит в состояние ОТКЛЮЧЕН, соответствующее ВУ переходит в состояние, определяемое параметром <i>R 1-9</i> или <i>R2-9</i>	
Устройство	<i>0 t</i>	Прямой гистерезис (для нагревателя)	
сравнения	02	Обратный гистерезис (для охладителя)	
<i>03</i>		П-образная характеристика (для сигнализации о входе контролируемой величины в заданные границы)	
	DЧ	U-образная характеристика (для сигнализации о выходе контролируемой величины за заданные границы	
П-регулятор	<i>0</i> 5	Прямо пропорциональный закон (нагреватель)	
	06	Обратно пропорциональный закон (охладитель)	
Регистратор	רם	-	

7.7.1 Настройка режима устройства сравнения

ВНИМАНИЕ

В режиме устройства сравнения ЛУ может работать, если в приборе установлено связанное с ним ВУ дискретного типа – электромагнитное реле, транзисторная оптопара, оптосимистор.

При работе в режиме устройства сравнения ЛУ работает по одному из типов логики (см. рисунок 7.8):

- тип логики 1 (прямой гистерезис) применяется в случае использования прибора для управления работой нагревателя (например, ТЭНа) или сигнализации о том, что значение текущего измерения (T_{TEK}) меньше уставки (T_{TEK}). При этом ВУ, подключенное к ЛУ, первоначально включается при значениях $T_{TEK} < (T-\Delta)$, выключается при $T_{TEK} < (T+\Delta)$ и вновь включается при $T_{TEK} < (T-\Delta)$, осуществляя тем самым двухпозиционное регулирование по уставке $T_{TEK} < (T_{TEK} < T_{TEK} < T_{TEK}$
- тип логики 2 (обратный гистерезис) применяется в случае использования прибора для управления работой охладителя (например, вентилятора) или сигнализации о превышении значения уставки. При этом ВУ первоначально включается при значениях T_{TEK} ($T + \Delta$), выключается при $T_{TEK} < (T \Delta)$;

- тип логики 3 (П-образная) применяется при использовании прибора для сигнализации о входе контролируемой величины в заданные границы. При этом ВУ включается при $(T \Delta) < T_{TEK} < (T + \Delta)$;
- тип логики 4 (U-образная) применяется при использовании прибора для сигнализации о выходе контролируемой величины за заданные границы. При этом ВУ включается при $T_{TEK} < (T \Delta)$ и $T_{TEK} > (T + \Delta)$.

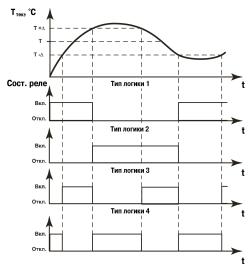


Рисунок 7.8 – Типы логики при работе ЛУ в режиме устройства сравнения

Значения уставки (Т) и гистерезиса (Δ) задаются в параметрах регулирования на первом уровне настройки.

Для ЛУ, работающего в режиме устройства сравнения, может быть задано время задержки включения и время задержки выключения. ЛУ включает или выключает ВУ, если условие, вызывающее изменение состояния, сохраняется как минимум в течение времени, установленного в параметрах R = 5 ($R \ge 5$) и R = 5 ($R \ge 5$) соответственно (см. рисунок 7.9).

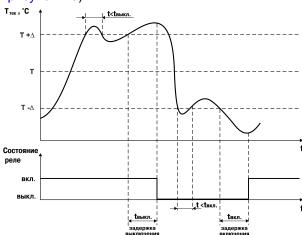


Рисунок 7.9 – Задание задержек включения/выключения ВУ для типа логики 1

Для ЛУ, работающего в режиме устройства сравнения, может быть задано минимальное время удержания выхода в замкнутом (параметры R = 7, $R \ge 7$) и разомкнутом (параметры R = 8) состояниях. ЛУ удерживает ВУ в соответствующем состоянии в течение заданного в этих параметрах времени, даже если по логике работы устройства сравнения требуется переключение (см. рисунок 7.10).

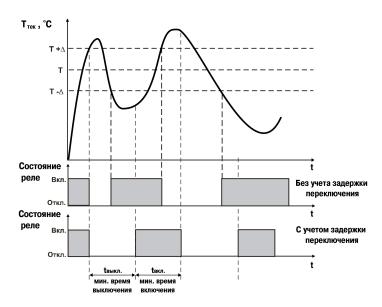


Рисунок 7.10 – Задание минимальных периодов удержания выхода в замкнутом и разомкнутом состояниях для типа логики 1

7.7.2 Настройка режима П-регулятора

\triangle

ВНИМАНИЕ

В режиме П-регулятора ЛУ может работать только при установленном на соответствующем выходе ВУ аналогового типа.

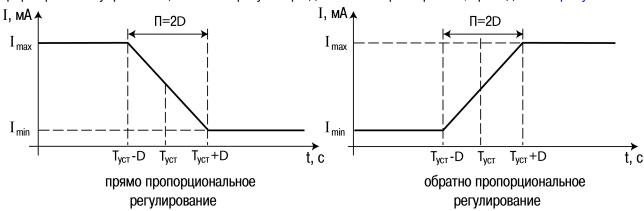


Рисунок 7.11 – Принцип формирования управляющего тока П-регулятора

В таблице 7.1 в качестве примера приведены значения выходного тока для обратно пропорционального регулирования при уставке $T = 500 \, ^{\circ}\text{C}$ и гистерезисе $\Delta = 40 \, ^{\circ}\text{C}$.

Таблица 7.1 – Пример прямо пропорционального регулирования

Температура, °С	Выходной ток, мА	Мощность регулятора, %
Более 540,0	4	0,0
540,0	4	0,0
530,0	6	12,5
520,0	8	25,0

Продолжение таблицы 7.1

Температура, °С	Выходной ток, мА	Мощность регулятора, %
510,0	10	37,5
500,0	12	50,0
490,0	14	62,5
480,0	16	75,0
470,0	18	87,5
460,0	20	100,0
Менее 460,0	20	100,0

7.7.3 Настройка режима трехпозиционного регулятора

Для настройки прибора в качестве трехпозиционного регулятора следует на вход каждого из ЛУ подать один и тот же сигнал (например, $R \vdash 2 = R2 \cdot 2 = II \mid bII \cdot Y = IIII$). Если существует необходимость снимать показания по второму входу и выводить их на индикатор, то следует установить $bII \cdot Y = III$ или $bII \cdot Y = III$.

7.7.4 Настройка режима регистратора

ВНИМАНИЕ

В режиме регистратора ЛУ может работать только при наличии ВУ аналогового типа.

При работе в режиме регистратора ЛУ сравнивает поданную на его вход величину с заданными в параметрах R = 3 (R2-3) и R = 4 (R2-4) значениями и выдает на соответствующее ВУ аналоговый сигнал в виде тока 4...20 мА, который можно подавать на самописец или другое регистрирующее устройство. Принцип формирования тока регистрации показан на рисунке 7.12. Для работы в этом режиме следует установить:

- нижний предел диапазона регистрации (Я 1-3 для ЛУ1, Я2-3 для ЛУ2);
- величину диапазона регистрации (Я І-Ч для ЛУ1, Я2-Ч для ЛУ2).

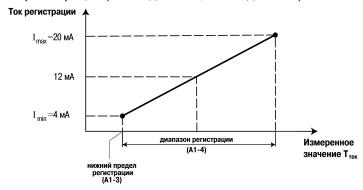


Рисунок 7.12 – Принцип формирования тока регистрации

7.7.5 Настройка безопасного состояния ВУ

Безопасное состояние – это состояние ВУ в которое оно переходит автоматически при:

- отключении ЛУ;
- аварии по входу;
- при изменении значений параметров Ь 1-1 и Ь 1-7;

Безопасное состояние задается параметров *R 1-9* и *R2-9*:

- oFF состояние ОТКЛЮЧЕНО (для дискретного типа ВУ), 4 мА или 0 В (для ВУ аналогового типа);
- an состояние ВКЛЮЧЕНО (для ВУ дискретного типа), 20 мА или 10 В (для ВУ аналогового типа).

8 Техническое обслуживание

8.1 Общие указания

Во время выполнения работ по техническому обслуживанию прибора следует соблюдать требования безопасности, изложенные в разделе 3.

Техническое обслуживание прибора проводится не реже одного раза в 6 месяцев и включает следующие процедуры:

- проверка крепления прибора;
- проверка винтовых соединений;
- удаление пыли и грязи с клеммника прибора.

8.2 Поверка

Поверку прибора проводят органы, аккредитованные на право поверки. Требования к поверке, порядок, основные этапы проведения определяются методикой МИ 3067-2007.

Методика поверки поставляется по требованию заказчика.

Межповерочный интервал – 3 года.

8.3 Проверка версии программного обеспечения

Результат подтверждения соответствия программного обеспечения считается положительным если номер версии программного обеспечения соответствует (не ниже) версии программного обеспечения указанного в разделе «Метрологические и технические характеристики» описание типа средств измерения. Версия программного обеспечения прибора указана на титульной странице паспорта.

8.4 Юстировка

8.4.1 Общие сведения

Юстировка прибора заключается в проведении ряда технологических операций, обеспечивающих восстановление его метрологических характеристик в случае изменения их после длительной эксплуатации прибора.

ВНИМАНИЕ

Необходимость проведения юстировки определяется по результатам поверки прибора и должна производиться только квалифицированными специалистами метрологических служб, осуществляющих эту поверку.

Юстировка выполняется при помощи образцовых источников сигналов, имитирующих работу датчиков и подключаемых вместо них к контактам «Вход 1» прибора. Во время юстировки прибор вычисляет соотношения между поступившими входными сигналами и сигналами соответствующих опорных точек схемы. Вычисленные соотношения (коэффициенты юстировки) записываются в энергонезависимую память и используются как базовые при выполнении всех дальнейших расчетов. Результаты, полученные при юстировке входа 1, автоматически распространяются на все входы прибора.

ПРЕДУПРЕЖДЕНИЕ

Если вычисленное значение коэффициента выходит за границы, установленные для него при разработке прибора, на индикатор выводится сообщение *Есс*. При появлении такого сообщения следует внимательно проверить соответствие подключенного к входу источника сигнала заданному типу первичного преобразователя, правильность схемы подключения, а также значение заданного для юстировки сигнала. После устранения выявленных замечаний операцию юстировки следует повторить.

Юстировка проводится индивидуально для следующих групп первичных преобразователей:

- термометры сопротивления;
- термопары и активные датчиков с выходным сигналом тока или напряжения.

Коэффициенты, полученные после юстировки одного (любого) первичного преобразователя из выбранной группы, автоматически распространяются на все остальные преобразователи этой группы. Кроме указанных групп первичных преобразователей, в приборе предусмотрена юстировка датчика температуры свободных концов термопар, а также юстировка выходных цифроаналоговых преобразователей «параметр-ток» и «параметр-напряжение» (для модификаций приборов, где в качестве ВУ используются ЦАП).

ПРЕДУПРЕЖДЕНИЕ

Перед юстировкой приборов проверить заданные значения коррекции "сдвига" и "наклона" (параметры *b l- l, b2- l* и *b l-2, b2-2*) и установить их, если необходимо, равными **0,0** и **1,000** соответственно. Перевести прибор в РАБОТУ.

8.4.2 Юстировка для работы с ТП и аналоговыми датчиками

Юстировка заключается в измерении эталонного значения. Для юстировки следует:

- 1. Подключить к прибору источник постоянного напряжения классом точности не ниже 0,05 (например, прибор для поверки вольтметров В1-12), соблюдая полярность (рисунок 8.1).
- 2. Установить на В1-12 выходной сигнал равным 64,00 мВ.
- 3. Подать питание на прибор. Не менее чем через 15...20 секунд произвести юстировку прибора, выполнив действия в последовательности, указанной на рисунке 8.2.

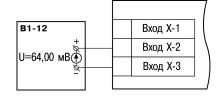


Рисунок 8.1 – Подключение источника постоянного напряжения

ПРЕДУПРЕЖДЕНИЕ

При выполнении юстировки выходное напряжение В1-12 должно оставаться неизменным.

- 4. Войти в режим задания кода юстировки путем нажатия и удержания не менее 3 секунд кнопки
- 5. Задать кнопками и значение кода юстировки **103**. Нажать кнопку Результатом правильно выполненной юстировки служит индикация прибором измеренной величины *БЧ.00*.
- 6. Снять напряжение питания с приборов и отсоединить В1-12.

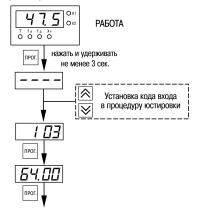


Рисунок 8.2 – Последовательность работы при юстировке

8.4.3 Юстировка для работы с ТС

Юстировка заключается в измерении эталонного значения. Для юстировки следует:

- 1. Подключить к прибору магазин сопротивлений типа Р4831 или подобный ему с классом точности не ниже 0,05 по трехпроводной линии (рисунок 8.3). Сопротивления проводов в линии должны быть равны друг другу и каждое не должно
- превышать величины 15 Ом.

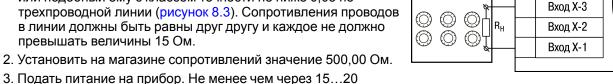


Рисунок 8.3 - Подключение магазина сопротивлений

- секунд произвести юстировку прибора, для чего выполнить действия в последовательности, указанной на рисунке 8.4.
- 4. Войти в режим задания кода юстировки путем нажатия и удержания не менее 3 секунд кнопки
- и 🖄 значение кода юстировки 🕼 Нажать кнопку 5. Задать кнопками

ПРЕДУПРЕЖДЕНИЕ

Если набран неправильный код или прибор измерил неверное юстировочное значение, в результате юстировки на индикаторе высветится Есс.

Результатом правильно выполненной юстировки служит индикация прибором измеренной величины *500.0*.

6. Снять напряжение питания с приборов и отсоединить Р4831.

Юстировочная величина может выходить за диапазон измерения ранее настроенного датчика (параметр $b \vdash \Box$), в этом случае после выхода из режима юстировки на индикаторе высветится HHH.

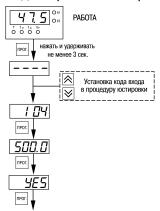


Рисунок 8.4 – Последовательность работы при юстировке

8.4.4 Юстировка выходов типа «И»

Юстировка заключается в подборке коэффициентов для минимального и максимального значения выходного тока. Для юстировки следует выполнить следующие действия:

1. Подключить к юстируемому выходу нагрузку R_H, и вольтметр согласно рисунку 8.5.

ПРЕДУПРЕЖДЕНИЕ

В качестве R_н можно использовать магазин сопротивлений Р4831 или подобный ему с классом точности не более 0,05, а в качестве вольтметра прибор с классом точности не более 0,05, например

- 2. Установить на магазине значение сопротивления 500,00 Ом.
- 3. Подать питание на прибор. На цифровом индикаторе прибора отобразится текущее значение измеряемой величины (прибор работает).
- 4. Выполнить юстировку минимального значения выходного тока.
- 5. Выполнить юстировку максимального значения выходного

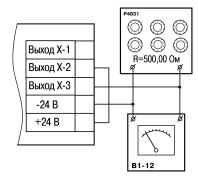
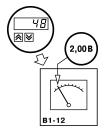


Рисунок 8.5 – Подключение вольтметра и магазина сопротивлений


Для юстировки минимального значения (4 мА) выходного тока следует выполнить действия:

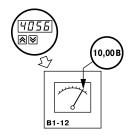
1. Войти в режим задания кода юстировки – нажать и удерживать не менее 3 секунд кнопку

- 2. Задать кнопками 🖄 и 🗡 значение кода юстировки:
 - для Выхода 1 **200**;
 - для Выхода 2 **202**.
- 3. Нажать кнопку прог. На цифровом индикаторе прибора появится значение параметра подбора, соответствующее минимально возможному значению выходного тока.

4.

Кнопками 🖄 и 🗵 на лицевой панели прибора установить такое значение параметра подбора на индикаторе прибора, чтобы падение напряжения на магазине сопротивлений было равно $2,00 \pm 0,02$ В (что соответствует минимальному току 4 мА). Это значение контролируется по показаниям вольтметра B1-12.

5. Нажать кнопку прибор перейдет к работе.


Для юстировки максимального значения (20 мА) выходного тока следует выполнять следующие действия:

- 1. Войти в режим задания кода юстировки путем нажатия и удержания не менее 3 секунд кнопки ПРОГ
- 2. Задать кнопками 🖄 и 🗡 значение кода юстировки:
 - для Выхода 1 **20 !**;
 - для Выхода 2 **203**.
- 3. Нажать кнопку

На цифровом индикаторе прибора появится значение параметра подбора, соответствующее минимально возможному значению выходного тока.

4.

Кнопками и на лицевой панели прибора установить такое значение параметра подбора на индикаторе прибора, чтобы падение напряжения на магазине сопротивлений было равно 10,0 ± 0,1 В (что соответствует максимальному току 20 мА). Это значение контролируется по показаниям вольтметра В1-12.

5. Нажать кнопку Прибор перейдет к работе.

8.4.5 Юстировка выходов типа «У»

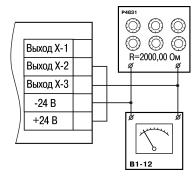
Юстировка заключается в подборке коэффициентов для минимального и максимального значения выходного напряжения. Для юстировки следует выполнить следующие действия:

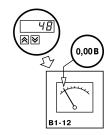
1. Подключить к юстируемому выходу нагрузку R_H и вольтметр согласно рисунку выше.

ПРЕДУПРЕЖДЕНИЕ

В качестве R_H можно использовать магазин сопротивлений P4831 или подобный ему с классом точности не более 0,05, в качестве вольтметра – прибор с классом точности не более 0,05, например B1-12.

- 3. Подать питание на прибор. На цифровом индикаторе прибора отобразится текущее значение измеряемой величины. Прибор **работает**.
- 4. Выполнить юстировку минимального значения выходного напряжения.
- 5. Выполнить юстировку максимального значения выходного напряжения.



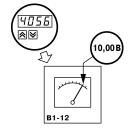

Рисунок 8.6 – Подключение вольтметра и магазина сопротивлений

Для юстировки минимального значения (0 В) выходного напряжения следует выполнить следующие действия:

- 1. Войти в режим задания кода юстировки путем нажатия и удержания не менее 3 секунд кнопки
- 2. Задать кнопками 🔯 и 🗵 значение кода юстировки:
 - для Выхода 1 **200**;
 - для Выхода 2 **202**.
- 3. Нажать кнопку | ПРОГ. На цифровом индикаторе прибора появится значение параметра подбора, соответствующее минимально возможному значению выходного напряжения.

4.

Кнопками и на лицевой панели прибора установить такое значение параметра подбора на индикаторе прибора, чтобы падение напряжения на магазине сопротивлений было равно 0,00 ± 0,02 В (что соответствует минимальному напряжению 0 В). Это значение контролируется по показаниям вольтметра В1-12;


5. Нажать кнопку Прибор перейдет к работе.

Для юстировки максимального значения (10 В) выходного напряжения следует выполнять следующие действия:

- 1. Войти в режим задания кода юстировки путем нажатия и удержания не менее 3 секунд кнопки
- 2. Задать кнопками 🔯 и 🔀 значение кода юстировки:
 - для Выхода 1 **20 !**;
 - для Выхода 2 **203**.
- 3. Нажать кнопку | ПРОГ | На цифровом индикаторе прибора появится значение параметра подбора, соответствующее минимально возможному значению выходного напряжения.

4.

Кнопками и на лицевой панели прибора установить такое значение параметра подбора на индикаторе прибора, чтобы падение напряжения на магазине сопротивлений было равно 10,0 ± 0,1 В (что соответствует максимальному напряжению 10 В). Это значение контролируется по показаниям вольтметра В1-12.

5. Нажать кнопку Прибор перейдет к работе.

9 Маркировка

На корпус прибора нанесены:

- наименование прибора;
- степень защиты корпуса по ГОСТ 14254;
- напряжение и частота питания;
- потребляемая мощность;
- класс защиты от поражения электрическим током по ГОСТ 12.2.007.0-75;
- знак утверждения типа средств измерений;
- знак соответствия требованиям ТР ТС (EAC);
- страна-изготовитель;
- заводской номер прибора и год выпуска.

На потребительскую тару нанесены:

- наименование прибора;
- знак соответствия требованиям TP TC (EAC);
- страна-изготовитель;
- заводской номер прибора и год выпуска.

10 Упаковка

Упаковка прибора производится в соответствии с ГОСТ 23088-80 в потребительскую тару, выполненную из коробочного картона по ГОСТ 7933-89.

Упаковка прибора при пересылке почтой производится по ГОСТ 9181-74.

11 Транспортирование и хранение

Прибор должен транспортироваться в закрытом транспорте любого вида. В транспортных средствах тара должна крепиться согласно правилам, действующим на соответствующих видах транспорта.

Условия транспортирования должны соответствовать условиям 5 по ГОСТ 15150-69 при температуре окружающего воздуха от минус 25 до плюс 55 °C с соблюдением мер защиты от ударов и вибраций.

Прибор следует перевозить в транспортной таре поштучно или в контейнерах.

Условия хранения в таре на складе изготовителя и потребителя должны соответствовать условиям 1 по ГОСТ 15150-69. В воздухе не должны присутствовать агрессивные примеси.

Прибор следует хранить на стеллажах.

12 Комплектность

Таблица 12.1 - Комплектность

Наименование	Количество
Прибор	1 шт.
Паспорт и Гарантийный талон	1 экз.
Руководство по эксплуатации	1 экз.
Комплект крепежных элементов	1 к-т.
Методика поверки (по требованию заказчика)	1 экз.

ПРЕДУПРЕЖДЕНИЕ

Изготовитель оставляет за собой право внесения дополнений в комплектность прибора.

13 Гарантийные обязательства

Изготовитель гарантирует соответствие прибора требованиям ТУ при соблюдении условий эксплуатации, транспортирования, хранения и монтажа.

Гарантийный срок эксплуатации – 5 лет со дня продажи.

В случае выхода прибора из строя в течение гарантийного срока при соблюдении условий эксплуатации, транспортирования, хранения и монтажа предприятие-изготовитель обязуется осуществить его бесплатный ремонт или замену.

Порядок передачи прибора в ремонт содержится в паспорте и в гарантийном талоне.

Приложение А. Настраиваемые параметры

ПРЕДУПРЕЖДЕНИЕ

При сохранении измененных значений параметров *ь І-В, ь2-В, ь І-З и ь2-З* ВУ переводятся в безопасные состояния, определенные параметрами *Я І-З и Я2-З*. При изменении других параметров прибор остается в рабочем состоянии.

Таблица А.1 – Перечень настраиваемых параметров

Па	раметр	Попустими и		Заводская	, Значения
Обозначе- ние	Наименование	Допустимые значения	Комментарии	установка	пользова- теля
		Основные пар	аметры регулирования		
*Т _{уст. 1}	Уставка для	-9999999	[ед. изм.]	30,0	
	регулируемой				
	величины				
	канала 1				
*∆1	Гистерезис	09999	[ед. изм.]	1,0	
	компаратора 1				
	или полоса				
	пропорциональ-				
	ности				
	П-регулятора 1				
*Т _{уст. 2}	Уставка для	-9999999	[ед. изм.]	30,0	
	регулируемой				
	величины				
	канала 2				
*Δ2	Гистерезис	09999	[ед. изм.]	1,0	
	компаратора 2				
	или полоса				
	пропорциональ-				
	ности				
	П-регулятора 2				
	1	араметры, опи	 сывающие логику работы :	прибора ———	
AD-0	Параметр	01	Разрешено изменять		
	секретности для		параметры регулирования		
	группы А		(Т и ΔТ) и параметры		
			группы А		
		02	Запрещено изменять		
			параметры группы А, при	01	
			этом возможно изменять Т		
			и ДТ		
		03	Запрещено изменять		
			параметры группы А, а		
			также Т и ΔТ		
R I- I	Режим работы	oFF	выключено		
	ЛУ1	01	Устройство сравнения:	<u> </u>	
			прямой гистерезис (для	01	
			нагревателя)		

Па	раметр	Попустими и		Заводская	Значения
Обозначе- ние	Наименование	Допустимые значения	Комментарии	установка	пользова- теля
		02	Устройство сравнения:		
			обратный гистерезис (для		
			охладителя)		
		03	Устройство сравнения:		
			П-образная		
			характеристика		
		04	Устройство сравнения:		
			U-образная		
			характеристика		
		05	П-регулятор: прямо		
			пропорциональный закон		
			(нагреватель)		
		06	П-регулятор: обратно		
			пропорциональный закон		
			(охладитель)		
		07	Регистратор		
R I-2	Сигнал на входе	01	Сигнал со входа 1, Т1		
,,, _	лу1	02	Сигнал со входа 2, Т2		
		03	Разность сигнала на	01	
			входах 1 и 2,		
			ΔT=T1-T2		
*A I-3	Нижний предел	-9999999	Показание прибора,	0,0	
	регистрации		соответствующее 0,0,		
	для ЛУ1		равно величине тока		
			регистрации 4 мА при		
			работе прибора в режиме		
			измеритель-регистратор		
*R I-Y	Диапазон	_9999999	иомеритель регистратор	100,0	
,,,,	регистрации	3333333		100,0	
	для ЛУ1				
R I-5	Задержка	099	[сек]	0	
77 7	включения ВУ1	000	[ook]	Ŭ	
R I-5	Задержка	099	[сек]	0	
	выключения				
	ВУ1				
R I-7	Минимальное	01000	[сек]	0	
	время				
	нахождения				
	ВУ1 во				
	включенном				
	состоянии			<u> </u>	

Па	раметр	Попустими и		Заполская	Значения
Обозначе- ние	Наименование	Допустимые значения	Комментарии	Заводская установка	пользова- теля
R I-8	Минимальное	01000	[сек]	0	
	время				
	нахождения				
	ВУ1 в				
	выключенном				
	состоянии				
R I-9	Состояние ВУ	oFF	Выключен (0 % мощности		
	первого канала)	oFF	
	при	on	Включен (100 % мощности	OFF	
	неисправности)		
A2- I	Режим работы	oFF	Выключено		
	ЛУ2	01	Устройство сравнения:		
			прямой гистерезис (для		
			нагревателя)		
		02	Устройство сравнения:		
			обратный гистерезис (для		
			охладителя)		
		03	Устройство сравнения:		
			П-образная		
			характеристика	oFF	
		04	Устройство сравнения:	OFF	
			U-образная		
			характеристика		
		05	П-регулятор: прямо		
			пропорциональный закон		
			(нагреватель)		
		06	П-регулятор: обратно		
			пропорциональный закон		
			(охладитель)		
		07	Регистратор		
R2-2	Сигнал на входе	01	Сигнал со входа 1, Т1		
	ЛУ2	02	Сигнал со входа 2, Т2		
		03	Разность сигнала на	02	
			входах 1 и 2,		
			ΔT=T1-T2		
*R2-3	Нижний предел	– 999…9999	Показание прибора,	0,0	
	регистрации		соответствующее 0,0,		
	для ЛУ2		равно величине тока		
			регистрации 4 мА при		
			работе прибора в режиме		
			измеритель-регистратор		

Па	раметр	Потуртили на		Заводская	Значения
Обозначе- ние	Наименование	Допустимые значения	Комментарии	установка	пользова- теля
*R2-4	Диапазон	-9999999		100,0	
	регистрации				
	для ЛУ2				
A2-5	Задержка	099	[сек]	0	
	включения ВУ2				
R2-5	Задержка	099	[сек]	0	
	выключения				
	ВУ2				
A2-7	Минимальное	01000	[сек]	0	
	время				
	нахождения				
	ВУ2 во				
	включенном				
	состоянии				
R2-8	Минимальное	01000	[сек]	0	
	время				
	нахождения				
	ВУ2 в				
	выключенном				
	состоянии				
R2-9	Состояние ВУ	oFF	Выключен (0 % мощности)		
	второго канала	on	Включен (100 %		
	при		мощности)	oFF	
	неисправности		,		
		цараметры, опис	⊥ сывающие измерения и инд	<u> </u>	
ЬО-О	Параметр	01	Разрешено изменять		
	секретности для		рабочие параметры		
	группы b	02	Запрещено изменять	01	
			рабочие параметры		
ЬO-4	Режим	00	Одиночный режим. Вывод		
	индикации		только первого канала		
			измерения		
		01	Ручной режим. Вывод	-	
		j .	первого или второго		
			канала измерения		
		02	Автоматический режим.	01	
		Ŭ <u></u>	Вывод первого или		
			второго канала измерения		
		03	Ручной режим. Вывод	1	
		00	,		
			первого, второго канала		
			измерения и ΔТ		

	раметр	Допустимые	Va	Заводская	Значения
Обозначе- ние	Наименование	значения	Комментарии	установка	пользова- теля
		04	Автоматический режим.		
			Вывод первого, второго		
			канала измерения и ΔТ		
ЬП-5	Режим быстрого	oFF	выключен	oFF	
	измерения	on	включен		
Ь І-П	Код типа	01	Cu 50 (α = 0,00426 °C -1)	01	
	датчика, работающего на	09	$50M (\alpha = 0.00428 ^{\circ}\text{C}^{-1})$		
	первом канале	07	Pt 50 (α = 0,00385 °C ⁻¹)		
		08	50Π (α = 0,00391 °C -1)		
		00	Cu 100 (α = 0,00426 °C ⁻¹)		
		14	100M (α = 0,00428 °C -1)]	
		02	Pt 100 (α = 0,00385 °C -1)]	
		03	100Π (α = 0,00391 °C -1)	1	
		29	Ni 100 (α = 0,00617 °C -1)		
		30	Cu 500 (α=0,00426 °C -1)		
		31	$500M (\alpha = 0.00428 ^{\circ}\text{C}^{-1})$	-	
		32	Pt 500 (α = 0,00385 °C -1)	-	
		33	500Π (α = 0,00391 °C -1)	-	
		34	Ni 500 (α = 0,00617 °C -1)	1	
		35	Cu 1000 (α = 0,00426 °C -1)	1	
		36	$1000M (\alpha = 0.00428 °C^{-1})$	1	
		37	Pt 1000 (α = 0,00385 °C -1)	_	
		38	1000Π (α = 0,00391 °C -1)	1	
		39	Ni 1000 (α = 0,00617 °C ⁻¹)	1	
		15	$53M (\alpha = 0.00426 ^{\circ}\text{C}^{-1})$	-	
		04	TXK (L)	-	
		20	ТЖК (Ј)	-	
		19	THH (N)	-	
		05	TXA (K)	-	
		17	ΤΠΠ (S)	-	
		18	ΤΠΠ (R)	-	
		16	ТПР (В)	-	
		21	TBP (A-1)	-	
		22	TBP (A-2)	-	
		23	TBP (A-3)	-	
		23	TMK (T)	-	
		12	Ток 05 мА	-	
		11	Ток 020 мА	-	
		10	Ток 420 мА	-	
		06	Напряжение -5050 мВ	1	
		13	Напряжение 01 В	1	
		oFF	выключен	1	

Па	раметр	Попустиции		Заводская	Значения
Обозначе- ние	Наименование	Допустимые значения	Комментарии	установка	пользова- теля
Ь І- І	Коррекция	-50,050,0	Суммируется с	0,0	
	«сдвиг		измеренным значением		
	характеристи-				
	ки» для первого				
	входа				
b I-2	Коррекция	0,9001,100	Измеренное значение	1,000	
	«наклон		умножается		
	характерис-		на заданный коэффициент		
	тики» для				
	первого входа				
Ь І-З	Режим работы	oFF	выключен	oFF	
	вычислителя квадратного корня по первому входу	on	включен		
Ь 1-5	Показание при-	-9999999	Масштабируется	0,0	
	бора для		умножением на		
	нижнего		коэффициент 10-Х, где Х -		
	предела		значение параметра Ь 1-7.		
	унифицирован-				
	ного входного				
	сигнала первого				
	входа				
*Ь I-Б	Показание	-9999999	Масштабируется	100,0	
	прибора для		умножением на		
	верхнего		коэффициент 10-х, где Х -		
	предела		значение параметра Ь 1-7		
	унифицирован-				
	ного входного				
	сигнала первого				
	входа				
Ь 1-7	Положение	0, 1, 2 и 3	Влияет на значения	1	
	десятичной		параметров <i>Ь 1-5</i> и <i>Ь 1-Б</i> .		
	точки при				
	индикации				
	параметров				
	первого канала				
Ь 1-8	Полоса	0,030,0	[ед. изм.]	30,0	
	цифрового				
	фильтра				
	первого канала				

Па	раметр	Попустими ю		Заводская	Значения
Обозначе- ние	Наименование	Допустимые значения	Комментарии	установка	пользова- теля
ь 1-9	Постоянная	099	[сек]	2	
	времени				
	цифрового				
	фильтра				
	первого канала				
b2-0	Код типа	аналогичны	аналогичны параметру Ь /-	04	
	датчика,	параметру <i>Ь І-</i>			
	работающего на	<i>-</i>			
	втором канале				
b2- l	Коррекция	-50.050.0	Суммируется с	0,0	
	«сдвиг		измеренным значением		
	характеристи-				
	ки» для второго				
	входа				
b2-2	Коррекция	0,9001,100	Измеренное значение	1,000	
	«наклон		умножается		
	характеристи-		на заданный коэффициент		
	ки» для второго				
	входа				
<i>62-3</i>	Режим работы вычислителя	oFF	выключен	oFF	
	квадратного корня по второму входу	on	включен		
b2-4	Источник	0	Внутренний датчик	0	
	компенсации ХС входа 2	1	Вход 1		
<i>62-5</i>	Показание	-9999999	Масштабируется	0,0	
	прибора для		умножением на		
	нижнего		коэффициент 10-х, где Х -		
	предела		значение параметра Ь2-7.		
	унифицирован-				
	ного входного				
	сигнала второго				
	входа				
b2-5	Показание	-9999999	Масштабируется	100,0	
	прибора для		умножением на		
	верхнего		коэффициент 10 ^{-X} , где X -		
	предела		значение параметра 62-7.		
	унифицирован-				
	ного входного				
	сигнала второго				
	входа				

Па	Параметр			Заводская	Значения
Обозначе- ние	Наименование	Допустимые значения	Комментарии	установка	пользова- теля
<i>62-</i> 7	Положение	0, 1, 2 и 3	Влияет на значения	1	
	десятичной		параметров <i>b2-5</i> и <i>b2-5</i> .		
	точки при				
	индикации				
	параметров				
	второго канала				
b2-8	Полоса	0.030.0	[ед. изм.]	30	
	цифрового				
	фильтра				
	второго канала				
b2-9	Постоянная	099	[сек]	2	
	времени				
	цифрового				
	фильтра				
	второго канала				

^{*} Параметры, значения которых масштабируются умножением на коэффициент 10-х, где X – значение параметра Ь I-7(ЬЗ-7).

ПРЕДУПРЕЖДЕНИЕ

В зависимости от модификации прибора и текущих настроек часть параметров или их значения могут быть скрыты. Условия доступности для редактирования и возможные значения отдельных параметров следующие:

- 1. Для параметра Я І- І(Я2- І) доступны значения:
 - а. 01...04 и oFF, если ВУ дискретного типа;
 - b. 05...07 и oFF, если ВУ аналогового типа.
- 2. Параметры R : -3(R2-3) и R : -4(R2-4) доступны для редактирования, если ЛУ работает в качестве регистратора (соответствует значению параметра R : -1(R2-1) = 07).
- 3. ПараметрыR = 1.5...R = 1.8 (R2-5...R2-8) доступны для редактирования, если ЛУ работает в качестве устройства сравнения (соответствует значению параметра R = 1.82 1.04).
- 4. Параметры *b !-3*, *b !-5*, *b !-5* (*b2-3*, *b2-5*, *b2-5*) доступны для редактирования, если на входе используется унифицированный датчик (соответствует значению параметра b1-0 (b2-0) = 06, 10...13).
- 5. Параметр $b \vdash \forall (b \neq 2 \vdash 4)$ доступен для редактирования, если на входе используется ТП ($b \vdash 1$ ($b \neq 2 \vdash 4$) = 04,05, 16...24).

Приложение Б. Возможные неисправности и способы их устранения

Неисправн	юсть	Возможная причина	Способ устранения
При работе при индикаторе отображаются:	бора на		
	∩0.dt	Данные еще не готовы.	Подождать 2 – 3 секунды.
		При индикации ∆Т на одном из	Проверить работоспособность
		входов обнаружена аварийная	датчиков
		ситуация	
	OCL.H	Датчик КХС превысил верхнюю грании	цу измерения (+ 105 °C)
	OCL.L	Датчик КХС превысил нижнюю границ	у измерения (минус 50 °C)
	HHHH	Вычисленное значение входной	Сверить код датчика в параметре Ь І-
		величины выше допустимого	<i>□</i> (<i>Ь2</i> - <i>□</i>) с фактически
		предела	подсоединенным датчиком
	LLLL	Вычисленное значение входной	Сверить код датчика в параметре <i>Ь І-</i>
		величины ниже допустимого предела	<i>□</i> (<i>Ь2</i> - <i>□</i>) с фактически
			подсоединенным датчиком
		Обрыв или короткое замыкание	Проверить работоспособность
		универсального датчика 420 мА	датчика
	HĒ	Вычисленное значение выше	Изменить разрядность
		допустимого предела индикации	индицируемых значений
	Lo	Вычисленное значение ниже	
		допустимого предела индикации	
	11	Обрыв ТС или ТП.	Проверить работоспособность
		Для унифицированного датчика 01	датчика
		В сигнал на входе прибора	
		превышает 1,1 В	
При работе при		Неверный код типа датчика	В параметре <i>Ь !-ப</i> (<i>Ьट</i> - <i>ப</i>) задать код,
значение темпе на индикаторе н			соответствующий используемому
соответствует р			датчику
		Введены неверные значения «сдвига	В параметре <i>Ь І- I (Ь2- I</i>) установить
		характеристики» и «наклона	[, в <i>Ь І-2</i> (<i>Ь2-2</i>) установить <i>І.</i>
		характеристики».	
		Используется двухпроводная схема	Соединить по рекомендациям см.
		соединения прибора с ТС.	раздел Подключение ТС по
			двухпроводной схеме или
			произвести соединение по 3-х
			проводной схеме.
		Действие электромагнитных помех.	Экранировать линию связи датчика с
			прибором, экран заземлить в одной
			точке.
		Соединение ТП с прибором	Соединить линию связи датчик-
		выполнено не специальным	прибор, используя
		термокомпенсационным кабелем	термокомпенсационный кабель,
			соответствующий типу
			подключаемой ТП

Неисправность	Возможная причина	Способ устранения
На индикаторе при	Неверное подключение датчика к	Проверить схему подключения
наличии токового	прибору	датчика
сигнала отображаются		
нули		
При нагреве	Неверное соединение прибора с ТП	Изменить полярность подключения
температура		тп
уменьшается и при		
охлаждении		
увеличивается		
Нет индикации второго	Выставлен одиночный режим	В параметре 🗗 Ч задать один из
канала	индикации.	режимов (<i>[] 1[]</i> Ч).
Показания 1 (2) канала	На вход обоих ЛУ подана одна	Задать в параметре Я І-∂ значение
дублируют показания 2	регулируемая величина	᠒ / , в параметре <i>Я2-2</i> значение ᠒2
(1)		
канала		
Не работает ВУ	Задан неверный режим работы ЛУ	Задать в параметре Я І- І (Я∂- І)
		требуемый режим работы
	При включении прибора	Изменить значение Δ
	температура оказывается в зоне	
	Туст±∆	
	Задана задержка включения ВУ	Задать значение параметра Я 1-5 (Я2-
		<i>5</i>), равное 2
ВУ не срабатывает при	Введено минимальное время	Задать значение параметров Я І-
достижении заданных	нахождения ВУ во включенном или	7 (<i>Я2-</i> 7) и <i>Я 1-В (Я2-В</i>), равное Д
границ	(и) выключенном состоянии	
	Задана задержка выключения	Задать значение параметра Я І-Б (Я2-
	ВУ	<i>Б</i>) равное 0
	На вход ЛУ подана ΔТ	Задать в параметре <i>Я І-2 (Я2-2</i>)
		значение 01 или 02
Невозможно изменить	Выставлена защита от изменения	Задать в параметре <i>RD-D</i> значение <i>D I</i>
значения параметров Т и	уставок	или <i>02</i>
Δ		
Нельзя изменить	Выставлена защита от изменения	В параметре <i>ЫО-О</i> задать <i>О I</i>
параметры группы Ь	установок	

рег.:1-RU-5736-3.16